Comox Lake Watershed Water Quality

Eco-Asset Management Symposium "Exploring Ecosystem Services and Eco-asset Management Opportunities in the Upper Comox Valley Watershed" Cori L. Barraclough, R.P. Bio, C.Biol., MRSB, PMP Aqua-Tex Scientific Consulting Ltd. March 15, 2017

Comox Lake Watershed

- Drinking water for 45,000 residents
- Watershed is 461 km² · 61% private-managed forest land
- Subwatershed supplies Village of Cumberland
- Lake is 2100 ha with mean depth of 65 m
- BC Hydro reservoir (c. 1912) with 4.5 m drawdown
- Watershed protection planning since 2006
- Watershed Protection Plan April 2014 April 2016
- Many recreational users
- Unfiltered water supply
- High quality water

Watershed Protection Plan

Vision: "Working through the Watershed Advisory Group, the CVRD will ensure that water resources and ecosystem function within the Comox Lake Watershed are protected in order to provide a high quality, sustainable drinking water supply."

"This plan recognizes that high quality drinking water is produced by a healthy ecosystem that functions properly with particular processes and attributes: specifically, those aquatic and riparian processes that capture, store and release water while simultaneously moderating or removing suspended sediments, bacteria, viruses, parasites and excess nutrients."

= Ecosystem services

What is "Water Quality"?

Physical, Chemical and Biological characteristics:

- Clarity (Turbidity)
- Colour
- Taste and Odour
- Temperature
- "clear, cold with no colour and no smell"
- Nutrients (e.g. nitrogen, phosphorus)
- Pathogens (certain protozoa, bacteria, & viruses)
- Toxins (e.g. pesticides, blue-green bacterial toxins)

Drinking Water Quality

- Legal requirement (BC Drinking Water Protection Regulation):
 - Fecal coliform 0 per 100 mL
 - E. coli 0 per 100 mL
 - Total coliform 90% samples have 0 per 100 mL and no sample more than 10 per 100 mL
- No legal requirement for any other parameters
- Drinking Water Treatment Objectives have 4 conditions:
 1. Two disinfection processes to inactive viruses and parasites
 2. Bacterial quality as noted above
 3. Average daily turbidity "around 1 NTU" but not to "exceed 5 NTU for more than 2 days in a 12- month period"
 4. Watershed control program in place

Natural Influences on Water Quality

- Natural Interaction between soils, water, and vegetation
 - Watershed size/drainage area
 - Slope and aspect
 - Precipitation patterns (how much water and when)
 - Natural disturbances (windthrow, insect outbreaks, wildfire, beaver activity)
 - Wildlife populations and density (ungulates, aquatic animals, birds)
 - Vegetative cover especially in riparian areas
 - Settling, mixing, biological activity in lakes/ reservoirs
 - Wave action on shorelines
 - Dilution
 - Geology and soil type (e.g. clay vs. mineral vs. organic)

Courtena

Bevan

Puntledge

Unconsolidated

Perseverance Creek

Volcanic Basalt

Spur Road, Comox Lake Main

Perseverance Creek

Unconsolidated

Photo courtesy CVRD

Human Influences on Water Quality

Human disturbance

- Soil disturbance (roads, trails, logging, mining)
- Compaction of soils (roads, trails, development)
- Concentration/ alteration of flow patterns (e.g. ditches along roads, water diversions, dams)
- Operation of reservoirs (changing water level)
- Introduction of animals (livestock, pets)
- Change in vegetative cover, especially in riparian areas (forestry, agriculture, development)
- Water withdrawals
- Waste inputs (sewage, other pollutants)

White's Bay

Photo courtesy CVRD

Natural Filters – Riparian Areas

- Slow water flow and trap suspended materials
- Provide organic material to feed stream ecosystem
- Tightly recycle nutrients
- Stabilize soils and prevent erosion
- Riparian soils are like sponges, holding and slowly releasing water over time
- Soils filter water and breakdown pollutants

Overland Flow

Figure 2.10: Flow paths of water over a surface. The portion of precipitation that runs off or infiltrates to the ground water table depends on the soil's permeability rate; surface roughness; and the amount, duration, and intensity of precipitation.

Natural Filters - Lakes

Water Large Phyto

Zoopl proto:

 partic rient ke up d eat

r

How Can We Protect Water Quality?

- Understand the characteristics of this watershed
- Keep riparian buffers intact
- Ensure forest harvest activities do not affect hydrology
 - Keep roads and trails to a minimum
- Ensure existing roads and trails are stable and properly drained
- Prevent catastrophic wildfire
 - Emergency response plan and limited access
 - Prevent contamination with human pathogens
 - Limit access and development

Restore natural drainage patterns

e.g. Perseverance Creek

How Can We Protect Water Quality?

- Monitor water quality for changes and adapt mgmt.
- Plan for changing weather and climate (e.g. larger storms, less snowpack)
 - Larger culverts, different shutdown windows
 - Flood and drought planning
 - Monitor for insect outbreaks
 - Control invasive plants

Maintain the reservoir at a stable level

Water conservation; reduced energy generation

Watershed Protection Plan

Comox Lake Watershed Protection Plan ►

http://www.comoxvalleyrd.ca/EN/main/departments / water-services/watershed-protection.html

Comox Valley

Cori L. Barraclough, R.P. Bio, C.Biol., MRSB, PMP Aqua-Tex Scientific Consulting Ltd. aqua-tex@islandnet.com www.aqua-tex.ca Tel: (250) 598-0266